
Node Details
- Name: zep
- Type: Zep
- Version: 2.0
- Category: Vector Stores
Base Classes
- Zep
- VectorStoreRetriever
- BaseRetriever
Parameters
Input Parameters
-
Document (optional)
- Type: Document
- List: true
- Description: The documents to be stored in the vector store.
-
Embeddings
- Type: Embeddings
- Description: The embedding model to use for vectorizing the documents.
-
Base URL
- Type: string
- Default: “http://127.0.0.1:8000”
- Description: The base URL of the Zep instance.
-
Zep Collection
- Type: string
- Description: The name of the Zep collection to use.
-
Zep Metadata Filter (optional)
- Type: json
- Description: A JSON object to filter documents based on metadata.
-
Embedding Dimension
- Type: number
- Default: 1536
- Description: The dimension of the embedding vectors.
-
Top K (optional)
- Type: number
- Default: 4
- Description: The number of top results to fetch.
- MMR-related parameters (added through addMMRInputParams function)
Credential Parameters
-
API Key (optional)
- Type: credential
- Description: JWT authentication for the Zep instance.
Outputs
-
Zep Retriever
- Type: retriever
- Base Classes: [Zep, VectorStoreRetriever, BaseRetriever]
-
Zep Vector Store
- Type: vectorStore
- Base Classes: [Zep, ZepVectorStore]
Functionality
The Zep_VectorStores node provides two main functionalities:- Upsert: Allows adding new documents to the Zep collection. It processes the input documents, applies the specified embeddings, and stores them in the Zep vector store.
- Similarity Search: Enables querying the vector store for similar documents. It supports both standard similarity search and MMR search for diverse results.
Usage
This node is particularly useful for:- Building knowledge bases or document retrieval systems
- Implementing semantic search functionality in applications
- Creating question-answering systems with context retrieval