
Node Details
- Name: Astra
- Type: Astra
- Version: 2.0
- Category: Vector Stores
Base Classes
- Astra
- VectorStoreRetriever
- BaseRetriever
Parameters
Input Parameters
-
Document (optional, list)
- Type: Document
- Description: List of documents to be stored in the vector database.
-
Embeddings
- Type: Embeddings
- Description: The embedding model used to convert documents into vector representations.
-
Namespace
- Type: string
- Description: The namespace in Astra DB where the data will be stored.
-
Collection
- Type: string
- Description: The collection name in Astra DB where the data will be stored.
-
Vector Dimension (optional)
- Type: number
- Default: 1536
- Description: The dimension of the vector embeddings.
-
Similarity Metric (optional)
- Type: string
- Options: cosine, euclidean, dot_product
- Default: cosine
- Description: The metric used to calculate similarity between vectors.
-
Top K (optional)
- Type: number
- Default: 4
- Description: Number of top results to fetch during retrieval.
-
MMR Parameters (optional)
- Additional parameters for Maximal Marginal Relevance search.
Credential Parameter
-
Connect Credential
- Type: credential
- Credential Name: AstraDBApi
- Description: Authentication credentials for connecting to Astra DB.
Outputs
-
Astra Retriever
- Type: VectorStoreRetriever
- Description: A retriever object for querying the Astra vector store.
-
Astra Vector Store
- Type: AstraDBVectorStore
- Description: The vector store object for direct interactions with Astra DB.
Functionality
-
Upsert Operation:
- Allows inserting or updating documents in the Astra DB vector store.
- Converts documents to vector embeddings before storage.
-
Initialization:
- Sets up the connection to Astra DB using provided credentials and parameters.
- Creates or connects to the specified namespace and collection.
-
Retrieval:
- Supports similarity search and MMR search on the stored vector embeddings.
Use Cases
- Semantic search applications
- Content recommendation systems
- Document similarity analysis
- Any AI application requiring efficient storage and retrieval of vector embeddings