
Node Details
- Name: Supabase_VectorStores
- Type: Supabase
- Version: 4.0
- Category: Vector Stores
Base Classes
- Supabase
- VectorStoreRetriever
- BaseRetriever
Inputs
-
Document (optional, list)
- Type: Document
- Description: List of documents to be embedded and stored
-
Embeddings
- Type: Embeddings
- Description: The embedding model to use for converting documents to vectors
-
Record Manager (optional)
- Type: RecordManager
- Description: Keeps track of records to prevent duplication
-
Supabase Project URL
- Type: string
- Description: URL of the Supabase project
-
Table Name
- Type: string
- Description: Name of the table in Supabase to store vectors
-
Query Name
- Type: string
- Description: Name of the query to use for similarity search
-
Supabase Metadata Filter (optional)
- Type: json
- Description: JSON object for filtering results based on metadata
-
Supabase RPC Filter (optional)
- Type: string
- Description: Query builder-style filtering, overrides metadata filter if set
-
Top K (optional)
- Type: number
- Description: Number of top results to fetch (default: 4)
-
MMR Parameters (optional)
- Various parameters for Maximal Marginal Relevance search
Outputs
-
Supabase Retriever
- Type: Retriever
- Description: A retriever object for querying the vector store
-
Supabase Vector Store
- Type: VectorStore
- Description: The Supabase vector store object
Credentials
- Credential Name: supabaseApi
- Required Parameters: supabaseApiKey
Functionality
- Upsert: Adds or updates documents in the vector store
- Delete: Removes documents from the vector store
- Search: Performs similarity or MMR search on the stored vectors
Usage
This node is particularly useful in workflows that require:- Storing and managing large amounts of textual data as vector embeddings
- Performing semantic similarity search on document collections
- Building retrieval-augmented generation systems
- Creating knowledge bases or document retrieval systems